Pandas - value_counts

value_counts() Metodu

Veri çerçevemizde sütun bazında verinin kaç kez tekrar ettiğini (kaç adet bulunduğunu) öğrenmek için value_counts() metodunu kullanabiliriz. value_counts metodu, veri frekansını (sıklığını) içeren bir Seri döndürün. Excel ve Libre Ofis Calc uygulamalarındaki Yinelenenleri Kaldır (Remove Duplicates) komutuna benzer bir işlev ile sütundaki benzersiz tüm değerleri içeren bir seri …

Continue reading »

Pandas - Bölme Operatörü

/ (Bölme) Operatörü

İki sütun verisini / bölme operatörü ile bölebiliriz.

baslik = ["Birler", "Onlar", "Yüzler"]
basliksiz = pd.read_excel("Veri_Setleri/basliksiz.ods", header = None, names = baslik )
print(basliksiz)
Birler Onlar Yüzler
0 9 82 246
1 7 78 180
2 8 83 565
3 6 82 486
4 4 37 615
5 2 …

Continue reading »

Pandas - Çarpma Operatörü

* (Çarpma) Operatörü

İki sütun verisini * çarpma operatörü ile çarpabiliriz.

baslik = ["Birler", "Onlar", "Yüzler"]
basliksiz = pd.read_excel("Veri_Setleri/basliksiz.ods", header = None, names = baslik )
print(basliksiz)
Birler Onlar Yüzler
0 9 82 246
1 7 78 180
2 8 83 565
3 6 82 486
4 4 37 615
5 2 …

Continue reading »

Pandas - Çıkarma Operatörü

- (Çıkarma) Operatörü

İki sütun verisini - çıkarma operatörü ile çıkarabiliriz, farkını alabiliriz.

baslik = ["Birler", "Onlar", "Yüzler"]
basliksiz = pd.read_excel("Veri_Setleri/basliksiz.ods", header = None, names = baslik )
print(basliksiz)
Birler Onlar Yüzler
0 9 82 246
1 7 78 180
2 8 83 565
3 6 82 486
4 4 37 615 …

Continue reading »

Pandas - mean

mean() Metodu

Her sütun için ortalama değer hesaplamak için mean() metodunu kullanabiliriz.

baslik = ["Birler", "Onlar", "Yüzler"]
basliksiz = pd.read_excel("Veri_Setleri/basliksiz.ods", header = None, names = baslik )
print(basliksiz)
Birler Onlar Yüzler
0 9 82 246
1 7 78 180
2 8 83 565
3 6 82 486
4 4 37 …

Continue reading »

Pandas - sum operatörü

sum() Metodu

Python'dan toplam değeri bulmak için kullanmaya aşina olduğumuz sum() fonksiyonu, Pandas içerisinde metot olarak bulunuyor. Yani Python'da sum() fonksiyonuna parametre olarak bir değişken veriyorduk. (Ör. sum(liste)). Pandasta ise veri çerçevesi adının sonuna metot olarak ekliyoruz. (Ör. VeriCercevesi.sum())

Örneklerle inceleyelim.

baslik = ["Birler", "Onlar", "Yüzler"]
df = pd.read_excel …

Continue reading »

Pandas - Toplama Operatörü

+ (Toplama) Operatörü

İki sütun verisini + toplama operatörü ile toplayabiliriz.

baslik = ["Birler", "Onlar", "Yüzler"]
basliksiz = pd.read_excel("Veri_Setleri/basliksiz.ods", header = None, names = baslik )
print(basliksiz)
Birler Onlar Yüzler
0 9 82 246
1 7 78 180
2 8 83 565
3 6 82 486
4 4 37 615
5 2 …

Continue reading »

Pandas - Melt

Pandas Melt Fonksiyonuyla Verilerinizi Yeniden Şekillendirin

Bu bölümde, Pandas'ın melt() fonksiyonunun nasıl kullanacağını öğreneceğiz. pd.melt() fonksiyonu, bir Pandas yapısını geniş formattan uzun formata yeniden şekillendirmek için kullanılır. Bunun anlamı, bir veya daha fazla sütunun tanımlayıcı olarak kullanılması ve diğer tüm sütunların değer olarak kullanılmasıdır. Kısacası bu fonksiyon, Veri Çerçevenizi …

Continue reading »

Pandas - pivot_table()

Pandas'ta Pivot Table (Özet Tablo) Fonksiyonunun Kullanımı

Verilerinize ilişkin özet tablola oluşturmak konusunda, Excel'deki pivot tablolara aşina olabilirsiniz. Burada, .pivot_table() metodunu kullanarak Python ve Pandas'ta nasıl pivot (özet) tablolar oluşturacağımızı öğreneceğiz.

Pivot Tablolar, verileri hızlı bir şekilde özetleyebilmek, verilerinizin nasıl göründüğüne dair bir fikir edinebilmek için önemli bir beceridir. Fonksiyon …

Continue reading »

Pandas - groupby

groupby() Metodu

Veri Çerçevemizde aynı isme ya da aynı değere sahip birden fazla veri bilgisi olabilir. Verileri gruplayarak, grupların toplam değerleri, ortalama değerleri, grupta kaç adet veri bulunduğu, gruptaki verilerden en küçük ya da en büyük verinin hangisi olduğu gibi pek çok bilgi edinmek için, groupby() metodundan yararlanacağız.

groupby fonksiyonu …

Continue reading »